Cargando…
Effects of Multi-Shell Free Water Correction on Glioma Characterization
Diffusion MRI is a useful tool to investigate the microstructure of brain tumors. However, the presence of fast diffusing isotropic signals originating from non-restricted edematous fluids, within and surrounding tumors, may obscure estimation of the underlying tissue characteristics, complicating t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700586/ https://www.ncbi.nlm.nih.gov/pubmed/34943621 http://dx.doi.org/10.3390/diagnostics11122385 |
_version_ | 1784620792835735552 |
---|---|
author | Starck, Lea Zaccagna, Fulvio Pasternak, Ofer Gallagher, Ferdia A. Grüner, Renate Riemer, Frank |
author_facet | Starck, Lea Zaccagna, Fulvio Pasternak, Ofer Gallagher, Ferdia A. Grüner, Renate Riemer, Frank |
author_sort | Starck, Lea |
collection | PubMed |
description | Diffusion MRI is a useful tool to investigate the microstructure of brain tumors. However, the presence of fast diffusing isotropic signals originating from non-restricted edematous fluids, within and surrounding tumors, may obscure estimation of the underlying tissue characteristics, complicating the radiological interpretation and quantitative evaluation of diffusion MRI. A multi-shell regularized free water (FW) elimination model was therefore applied to separate free water from tissue-related diffusion components from the diffusion MRI of 26 treatment-naïve glioma patients. We then investigated the diagnostic value of the derived measures of FW maps as well as FW-corrected tensor-derived maps of fractional anisotropy (FA). Presumed necrotic tumor regions display greater mean and variance of FW content than other parts of the tumor. On average, the area under the receiver operating characteristic (ROC) for the classification of necrotic and enhancing tumor volumes increased by 5% in corrected data compared to non-corrected data. FW elimination shifts the FA distribution in non-enhancing tumor parts toward higher values and significantly increases its entropy (p ≤ 0.003), whereas skewness is decreased (p ≤ 0.004). Kurtosis is significantly decreased (p < 0.001) in high-grade tumors. In conclusion, eliminating FW contributions improved quantitative estimations of FA, which helps to disentangle the cancer heterogeneity. |
format | Online Article Text |
id | pubmed-8700586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87005862021-12-24 Effects of Multi-Shell Free Water Correction on Glioma Characterization Starck, Lea Zaccagna, Fulvio Pasternak, Ofer Gallagher, Ferdia A. Grüner, Renate Riemer, Frank Diagnostics (Basel) Article Diffusion MRI is a useful tool to investigate the microstructure of brain tumors. However, the presence of fast diffusing isotropic signals originating from non-restricted edematous fluids, within and surrounding tumors, may obscure estimation of the underlying tissue characteristics, complicating the radiological interpretation and quantitative evaluation of diffusion MRI. A multi-shell regularized free water (FW) elimination model was therefore applied to separate free water from tissue-related diffusion components from the diffusion MRI of 26 treatment-naïve glioma patients. We then investigated the diagnostic value of the derived measures of FW maps as well as FW-corrected tensor-derived maps of fractional anisotropy (FA). Presumed necrotic tumor regions display greater mean and variance of FW content than other parts of the tumor. On average, the area under the receiver operating characteristic (ROC) for the classification of necrotic and enhancing tumor volumes increased by 5% in corrected data compared to non-corrected data. FW elimination shifts the FA distribution in non-enhancing tumor parts toward higher values and significantly increases its entropy (p ≤ 0.003), whereas skewness is decreased (p ≤ 0.004). Kurtosis is significantly decreased (p < 0.001) in high-grade tumors. In conclusion, eliminating FW contributions improved quantitative estimations of FA, which helps to disentangle the cancer heterogeneity. MDPI 2021-12-17 /pmc/articles/PMC8700586/ /pubmed/34943621 http://dx.doi.org/10.3390/diagnostics11122385 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Starck, Lea Zaccagna, Fulvio Pasternak, Ofer Gallagher, Ferdia A. Grüner, Renate Riemer, Frank Effects of Multi-Shell Free Water Correction on Glioma Characterization |
title | Effects of Multi-Shell Free Water Correction on Glioma Characterization |
title_full | Effects of Multi-Shell Free Water Correction on Glioma Characterization |
title_fullStr | Effects of Multi-Shell Free Water Correction on Glioma Characterization |
title_full_unstemmed | Effects of Multi-Shell Free Water Correction on Glioma Characterization |
title_short | Effects of Multi-Shell Free Water Correction on Glioma Characterization |
title_sort | effects of multi-shell free water correction on glioma characterization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700586/ https://www.ncbi.nlm.nih.gov/pubmed/34943621 http://dx.doi.org/10.3390/diagnostics11122385 |
work_keys_str_mv | AT starcklea effectsofmultishellfreewatercorrectionongliomacharacterization AT zaccagnafulvio effectsofmultishellfreewatercorrectionongliomacharacterization AT pasternakofer effectsofmultishellfreewatercorrectionongliomacharacterization AT gallagherferdiaa effectsofmultishellfreewatercorrectionongliomacharacterization AT grunerrenate effectsofmultishellfreewatercorrectionongliomacharacterization AT riemerfrank effectsofmultishellfreewatercorrectionongliomacharacterization |