Cargando…
Gradient Regularization as Approximate Variational Inference
We developed Variational Laplace for Bayesian neural networks (BNNs), which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational Laplace objective is simple to evaluate, as it is...
Autores principales: | Unlu, Ali, Aitchison, Laurence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700595/ https://www.ncbi.nlm.nih.gov/pubmed/34945935 http://dx.doi.org/10.3390/e23121629 |
Ejemplares similares
-
Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation
por: Galy-Fajou, Théo, et al.
Publicado: (2021) -
Extended Variational Message Passing for Automated Approximate Bayesian Inference
por: Akbayrak, Semih, et al.
Publicado: (2021) -
Variational quantum approximate support vector machine with inference transfer
por: Park, Siheon, et al.
Publicado: (2023) -
Approximate parameter inference in systems biology using gradient matching: a comparative evaluation
por: Macdonald, Benn, et al.
Publicado: (2016) -
Variational inference using approximate likelihood under the coalescent with recombination
por: Liu, Xinhao, et al.
Publicado: (2021)