Cargando…
Combining Measures of Signal Complexity and Machine Learning for Time Series Analyis: A Review
Measures of signal complexity, such as the Hurst exponent, the fractal dimension, and the Spectrum of Lyapunov exponents, are used in time series analysis to give estimates on persistency, anti-persistency, fluctuations and predictability of the data under study. They have proven beneficial when doi...
Autores principales: | Raubitzek, Sebastian, Neubauer, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700684/ https://www.ncbi.nlm.nih.gov/pubmed/34945978 http://dx.doi.org/10.3390/e23121672 |
Ejemplares similares
-
Combining Fractional Derivatives and Machine Learning: A Review
por: Raubitzek, Sebastian, et al.
Publicado: (2022) -
An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data
por: Raubitzek, Sebastian, et al.
Publicado: (2022) -
Spectrochemical methods of analyis
por: Winefordner, J D
Publicado: (1972) -
Windowed fringe pattern analyis
por: Kemao, Qian
Publicado: (2013) -
Taming the Chaos in Neural Network Time Series Predictions
por: Raubitzek, Sebastian, et al.
Publicado: (2021)