Cargando…
A Multi-Method Survey on the Use of Sentiment Analysis in Multivariate Financial Time Series Forecasting
In practice, time series forecasting involves the creation of models that generalize data from past values and produce future predictions. Moreover, regarding financial time series forecasting, it can be assumed that the procedure involves phenomena partly shaped by the social environment. Thus, the...
Autores principales: | Liapis, Charalampos M., Karanikola, Aikaterini, Kotsiantis, Sotiris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700726/ https://www.ncbi.nlm.nih.gov/pubmed/34945909 http://dx.doi.org/10.3390/e23121603 |
Ejemplares similares
-
Investigating Deep Stock Market Forecasting with Sentiment Analysis
por: Liapis, Charalampos M., et al.
Publicado: (2023) -
CO(2) concentration forecasting in smart cities using a hybrid ARIMA–TFT model on multivariate time series IoT data
por: Linardatos, Pantelis, et al.
Publicado: (2023) -
Evaluation of interpretability methods for multivariate time series forecasting
por: Ozyegen, Ozan, et al.
Publicado: (2021) -
Human Movement Representation on Multivariate Time Series for Recognition of Professional Gestures and Forecasting Their Trajectories
por: Manitsaris, Sotiris, et al.
Publicado: (2020) -
Neural Networks for Financial Time Series Forecasting
por: Sako, Kady, et al.
Publicado: (2022)