Cargando…
Multilevel Deep Feature Generation Framework for Automated Detection of Retinal Abnormalities Using OCT Images
Optical coherence tomography (OCT) images coupled with many learning techniques have been developed to diagnose retinal disorders. This work aims to develop a novel framework for extracting deep features from 18 pre-trained convolutional neural networks (CNN) and to attain high performance using OCT...
Autores principales: | Barua, Prabal Datta, Chan, Wai Yee, Dogan, Sengul, Baygin, Mehmet, Tuncer, Turker, Ciaccio, Edward J., Islam, Nazrul, Cheong, Kang Hao, Shahid, Zakia Sultana, Acharya, U. Rajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700736/ https://www.ncbi.nlm.nih.gov/pubmed/34945957 http://dx.doi.org/10.3390/e23121651 |
Ejemplares similares
-
A Hand-Modeled Feature Extraction-Based Learning Network to Detect Grasps Using sEMG Signal
por: Baygin, Mehmet, et al.
Publicado: (2022) -
TMP19: A Novel Ternary Motif Pattern-Based ADHD Detection Model Using EEG Signals
por: Barua, Prabal Datta, et al.
Publicado: (2022) -
Multilevel hybrid accurate handcrafted model for myocardial infarction classification using ECG signals
por: Barua, Prabal Datta, et al.
Publicado: (2022) -
CGP17Pat: Automated Schizophrenia Detection Based on a Cyclic Group of Prime Order Patterns Using EEG Signals
por: Aydemir, Emrah, et al.
Publicado: (2022) -
Swin-textural: A novel textural features-based image classification model for COVID-19 detection on chest computed tomography
por: Tuncer, Ilknur, et al.
Publicado: (2023)