Cargando…
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Uncertainty quantification for complex deep learning models is increasingly important as these techniques see growing use in high-stakes, real-world settings. Currently, the quality of a model’s uncertainty is evaluated using point-prediction metrics, such as the negative log-likelihood (NLL), expec...
Autores principales: | Kompa, Benjamin, Snoek, Jasper, Beam, Andrew L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700765/ https://www.ncbi.nlm.nih.gov/pubmed/34945914 http://dx.doi.org/10.3390/e23121608 |
Ejemplares similares
-
Second opinion needed: communicating uncertainty in medical machine learning
por: Kompa, Benjamin, et al.
Publicado: (2021) -
Frequentist Hypothesis Testing with Background Uncertainty
por: Cranmer, K
Publicado: (2003) -
Generalized Empirical Bayes Modeling via Frequentist Goodness of Fit
por: Mukhopadhyay, Subhadeep, et al.
Publicado: (2018) -
Evaluation of Uncertainty Quantification in Deep Learning
por: Ståhl, Niclas, et al.
Publicado: (2020) -
Frequentist and Bayesian approaches for food allergen risk assessment: risk outcome and uncertainty comparisons
por: Birot, Sophie, et al.
Publicado: (2019)