Cargando…
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700879/ https://www.ncbi.nlm.nih.gov/pubmed/34946978 http://dx.doi.org/10.3390/genes12122030 |
_version_ | 1784620864417824768 |
---|---|
author | Romanova, Elena V. Bukin, Yurij S. Mikhailov, Kirill V. Logacheva, Maria D. Aleoshin, Vladimir V. Sherbakov, Dmitry Y. |
author_facet | Romanova, Elena V. Bukin, Yurij S. Mikhailov, Kirill V. Logacheva, Maria D. Aleoshin, Vladimir V. Sherbakov, Dmitry Y. |
author_sort | Romanova, Elena V. |
collection | PubMed |
description | There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions. |
format | Online Article Text |
id | pubmed-8700879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87008792021-12-24 The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa Romanova, Elena V. Bukin, Yurij S. Mikhailov, Kirill V. Logacheva, Maria D. Aleoshin, Vladimir V. Sherbakov, Dmitry Y. Genes (Basel) Article There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions. MDPI 2021-12-20 /pmc/articles/PMC8700879/ /pubmed/34946978 http://dx.doi.org/10.3390/genes12122030 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Romanova, Elena V. Bukin, Yurij S. Mikhailov, Kirill V. Logacheva, Maria D. Aleoshin, Vladimir V. Sherbakov, Dmitry Y. The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa |
title | The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa |
title_full | The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa |
title_fullStr | The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa |
title_full_unstemmed | The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa |
title_short | The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa |
title_sort | mitochondrial genome of a freshwater pelagic amphipod macrohectopus branickii is among the longest in metazoa |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700879/ https://www.ncbi.nlm.nih.gov/pubmed/34946978 http://dx.doi.org/10.3390/genes12122030 |
work_keys_str_mv | AT romanovaelenav themitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT bukinyurijs themitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT mikhailovkirillv themitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT logachevamariad themitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT aleoshinvladimirv themitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT sherbakovdmitryy themitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT romanovaelenav mitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT bukinyurijs mitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT mikhailovkirillv mitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT logachevamariad mitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT aleoshinvladimirv mitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa AT sherbakovdmitryy mitochondrialgenomeofafreshwaterpelagicamphipodmacrohectopusbranickiiisamongthelongestinmetazoa |