Cargando…
Exome Sequencing Identifies a Novel FBN1 Variant in a Pakistani Family with Marfan Syndrome That Includes Left Ventricle Diastolic Dysfunction
Introduction: Cardiomyopathies are diseases of the heart muscle and are important causes of heart failure. Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy that can be acquired, syndromic or non-syndromic. The current study was conducted to explore the genetic defects in a Pakistani f...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700962/ https://www.ncbi.nlm.nih.gov/pubmed/34946863 http://dx.doi.org/10.3390/genes12121915 |
Sumario: | Introduction: Cardiomyopathies are diseases of the heart muscle and are important causes of heart failure. Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy that can be acquired, syndromic or non-syndromic. The current study was conducted to explore the genetic defects in a Pakistani family with cardiac disease and features of Marfan’s syndrome (MFS). Methods: A family with left ventricle (LV) diastolic dysfunction and MFS phenotype was assessed in Pakistan. The clinical information and blood samples from the patients were collected after physical, cardiovascular, and ophthalmologic examinations. An affected individual (proband) was subjected to whole-exome sequencing (WES). The findings were further validated through Sanger sequencing in the family. Results: Through WES and sanger validation, we identified a novel variant NM_000138.4; c.1402A>G in the Fibrillin-1 (FBN1) gene that segregates with LV diastolic dysfunction and MFS. Furthermore, bioinformatic evaluation suggested that the novel variant is deleterious and disease-causing. Conclusions: This study identified for the first time a novel FBN1 variant in a family with LV diastolic dysfunction and MFS in Pakistan. |
---|