Cargando…
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
One of the greatest limitations in the field of EEG-based emotion recognition is the lack of training samples, which makes it difficult to establish effective models for emotion recognition. Inspired by the excellent achievements of generative models in image processing, we propose a data augmentati...
Autores principales: | Bao, Guangcheng, Yan, Bin, Tong, Li, Shu, Jun, Wang, Linyuan, Yang, Kai, Zeng, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700963/ https://www.ncbi.nlm.nih.gov/pubmed/34955797 http://dx.doi.org/10.3389/fncom.2021.723843 |
Ejemplares similares
-
Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Linking Multi-Layer Dynamical GCN With Style-Based Recalibration CNN for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2022) -
Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network
por: Pan, Bo, et al.
Publicado: (2021) -
E2SGAN: EEG-to-SEEG translation with generative adversarial networks
por: Hu, Mengqi, et al.
Publicado: (2022) -
High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network
por: Yang, Kai, et al.
Publicado: (2020)