Cargando…

Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility

The aim of this work was to develop functional couscous in a traditional Tunisian manner (hand rolling), enriched in algae biomass (6% w/w). Four Chlorella vulgaris (C. vulgaris) biomasses and one mixture of C. vulgaris and two macroalgae biomasses (Ulva rigida and Fucus vesiculosus) were used. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Khemiri, Sheyma, Nunes, Maria Cristiana, Bessa, Rui J. B., Alves, Susana P., Smaali, Issam, Raymundo, Anabela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701376/
https://www.ncbi.nlm.nih.gov/pubmed/34945710
http://dx.doi.org/10.3390/foods10123159
Descripción
Sumario:The aim of this work was to develop functional couscous in a traditional Tunisian manner (hand rolling), enriched in algae biomass (6% w/w). Four Chlorella vulgaris (C. vulgaris) biomasses and one mixture of C. vulgaris and two macroalgae biomasses (Ulva rigida and Fucus vesiculosus) were used. The C. vulgaris strain was subjected to random mutagenesis and different culture conditions (Allmicroalgae), resulting in different pigmentations and biochemical compositions. Couscous samples were characterized in terms of nutritional properties, oscillatory rheology properties and digestibility. All biomasses provided a significant supplementation of nutrients and excellent acceptance. The enrichment resulted in lower firmness, higher viscoelastic functions (G′ and G″) and a significant improvement in the cooking quality. Major differences between couscous samples with different microalgae were observed in protein and mineral contents, fully meeting Regulation (EC) No. 1924/2006 requirements for health claims made on foodstuffs. The amount of digested proteins was also higher in algae-containing samples. The fatty acid profile of the enriched couscous varied in a biomass-specific way, with a marked increase in linolenic acid (18:3 ω3) and a decrease in the ω6/ω3 ratio. Sensory analysis revealed that microalgae-containing products could compete with conventional goods with an added advantage, that is, having an ameliorated nutritional value using algae as a “trendy” and sustainable ingredient.