Cargando…
Differential Biases and Variabilities of Deep Learning–Based Artificial Intelligence and Human Experts in Clinical Diagnosis: Retrospective Cohort and Survey Study
BACKGROUND: Deep learning (DL)–based artificial intelligence may have different diagnostic characteristics than human experts in medical diagnosis. As a data-driven knowledge system, heterogeneous population incidence in the clinical world is considered to cause more bias to DL than clinicians. Conv...
Autores principales: | Cha, Dongchul, Pae, Chongwon, Lee, Se A, Na, Gina, Hur, Young Kyun, Lee, Ho Young, Cho, A Ra, Cho, Young Joon, Han, Sang Gil, Kim, Sung Huhn, Choi, Jae Young, Park, Hae-Jeong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701703/ https://www.ncbi.nlm.nih.gov/pubmed/34889764 http://dx.doi.org/10.2196/33049 |
Ejemplares similares
-
Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database
por: Cha, Dongchul, et al.
Publicado: (2019) -
Human–machine cooperation meta-model for clinical diagnosis by adaptation to human expert’s diagnostic characteristics
por: Park, Hae-Jeong, et al.
Publicado: (2023) -
Soft computing in artificial intelligence
por: Cho, Young, et al.
Publicado: (2014) -
Artificial intelligence and expert systems
por: Gupta, I, et al.
Publicado: (2020) -
Graph-theoretical analysis for energy landscape reveals the organization of state transitions in the resting-state human cerebral cortex
por: Kang, Jiyoung, et al.
Publicado: (2019)