Cargando…
Using Artificial Neural Network Condensation to Facilitate Adaptation of Machine Learning in Medical Settings by Reducing Computational Burden: Model Design and Evaluation Study
BACKGROUND: Machine learning applications in the health care domain can have a great impact on people’s lives. At the same time, medical data is usually big, requiring a significant number of computational resources. Although this might not be a problem for the wide adoption of machine learning tool...
Autores principales: | Liu, Dianbo, Zheng, Ming, Sepulveda, Nestor Andres |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701705/ https://www.ncbi.nlm.nih.gov/pubmed/34889747 http://dx.doi.org/10.2196/20767 |
Ejemplares similares
-
Growing adaptive machines: combining development and learning in artificial neural networks
por: Kowaliw, Taras, et al.
Publicado: (2014) -
LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
por: Huang, Li, et al.
Publicado: (2020) -
Artificial Neural Networks with Machine Learning Design for a Polyphasic Encoder
por: Alvarez-Rodríguez, Sergio, et al.
Publicado: (2023) -
In Vitro Transcription–Translation in an Artificial Biomolecular
Condensate
por: Schoenmakers, Ludo L. J., et al.
Publicado: (2023) -
A New Operative Procedure Facilitating the Adaptation of Artificial Dentures
por: Potts, H. A.
Publicado: (1917)