Cargando…

Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask Region-Based CNN Architectures

Liver image segmentation has been increasingly employed for key medical purposes, including liver functional assessment, disease diagnosis, and treatment. In this work, we introduce a liver image segmentation method based on generative adversarial networks (GANs) and mask region-based convolutional...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Xiaoqin, Chen, Xiaowen, Lai, Ce, Zhu, Yuanzhong, Yang, Hanfeng, Du, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702320/
https://www.ncbi.nlm.nih.gov/pubmed/34957310
http://dx.doi.org/10.1155/2021/9956983
Descripción
Sumario:Liver image segmentation has been increasingly employed for key medical purposes, including liver functional assessment, disease diagnosis, and treatment. In this work, we introduce a liver image segmentation method based on generative adversarial networks (GANs) and mask region-based convolutional neural networks (Mask R-CNN). Firstly, since most resulting images have noisy features, we further explored the combination of Mask R-CNN and GANs in order to enhance the pixel-wise classification. Secondly, k-means clustering was used to lock the image aspect ratio, in order to get more essential anchors which can help boost the segmentation performance. Finally, we proposed a GAN Mask R-CNN algorithm which achieved superior performance in comparison with the conventional Mask R-CNN, Mask-CNN, and k-means algorithms in terms of the Dice similarity coefficient (DSC) and the MICCAI metrics. The proposed algorithm also achieved superior performance in comparison with ten state-of-the-art algorithms in terms of six Boolean indicators. We hope that our work can be effectively used to optimize the segmentation and classification of liver anomalies.