Cargando…

Music Composition and Emotion Recognition Using Big Data Technology and Neural Network Algorithm

To implement a mature music composition model for Chinese users, this paper analyzes the music composition and emotion recognition of composition content through big data technology and Neural Network (NN) algorithm. First, through a brief analysis of the current music composition style, a new Music...

Descripción completa

Detalles Bibliográficos
Autor principal: Wang, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702338/
https://www.ncbi.nlm.nih.gov/pubmed/34956348
http://dx.doi.org/10.1155/2021/5398922
Descripción
Sumario:To implement a mature music composition model for Chinese users, this paper analyzes the music composition and emotion recognition of composition content through big data technology and Neural Network (NN) algorithm. First, through a brief analysis of the current music composition style, a new Music Composition Neural Network (MCNN) structure is proposed, which adjusts the probability distribution of the Long Short-Term Memory (LSTM) generation network by constructing a reasonable Reward function. Meanwhile, the rules of music theory are used to restrict the generation of music style and realize the intelligent generation of specific style music. Afterward, the generated music composition signal is analyzed from the time-frequency domain, frequency domain, nonlinearity, and time domain. Finally, the emotion feature recognition and extraction of music composition content are realized. Experiments show that: when the iteration times of the function increase, the number of weight parameter adjustments and learning ability will increase, and thus the accuracy of the model for music composition can be greatly improved. Meanwhile, when the iteration times increases, the loss function will decrease slowly. Moreover, the music composition generated through the proposed model includes the following four aspects: sadness, joy, loneliness, and relaxation. The research results can promote music composition intellectualization and impacts traditional music composition mode.