Cargando…

Upregulated GSDMB in Clear Cell Renal Cell Carcinoma Is Associated with Immune Infiltrates and Poor Prognosis

Gasdermin B (GSDMB) is part of the gasdermin (GSDM) family, and they use varying means of domain interactions in molecules to adjust their pore-forming and lipid-binding actions. The GSDM family has roles in the regulation of cell differentiation and proliferation, particularly in the process of pyr...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Yuanshan, Zhou, Zhongbao, Chai, Yumeng, Zhang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702340/
https://www.ncbi.nlm.nih.gov/pubmed/34957313
http://dx.doi.org/10.1155/2021/7753553
Descripción
Sumario:Gasdermin B (GSDMB) is part of the gasdermin (GSDM) family, and they use varying means of domain interactions in molecules to adjust their pore-forming and lipid-binding actions. The GSDM family has roles in the regulation of cell differentiation and proliferation, particularly in the process of pyroptosis. Nonetheless, the correlation of GSDMB with immune infiltrates and its prognostic values in clear cell renal cell carcinoma (ccRCC) are still undefined. Therefore, we assessed the correlation of GSDMB with immune infiltrates and its prognostic role in ccRCC. The transcriptional expression profiles of GSDMB in ccRCC tissues in addition to normal tissues were retrieved from The Cancer Genome Atlas (TCGA) and additionally verified in a different independent cohort, which was obtained from the Gene Expression Omnibus (GEO) database. The Human Protein Atlas and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) were used to assess the protein expression of GSDMB. To assess the effectiveness of GSDMB in distinguishing ccRCC from normal samples, the receiver operating characteristic (ROC) curve analysis was performed. Relationships between GSDMB expression, clinicopathological variables, and overall survival (OS) were evaluated with multivariate methods as well as Kaplan-Meier survival curves. Protein-protein interaction (PPI) networks were created with STRING. Functional enrichment analyses were conducted by utilizing the “ClusterProfiler” package. The Tumor Immune Estimation Resource (TIMER) and tumor-immune system interaction database (TISIDB) were utilized to determine the association between the mRNA expression of GSDMB and immune infiltrates. GSDMB expression was significantly more upregulated in ccRCC tissues compared to surrounding normal tissues. An increase in the mRNA expression of GSDMB was related to the high pathologic stage and advanced TNM stage. The analysis of the ROC curve indicated that GSDMB had an AUC value of 0.820 to distinguish between ccRCC tissues and adjacent normal controls. Kaplan-Meier survival analysis indicated that ccRCC patients with high GSDMB had a poorer prognosis compared to those with low GSDMB (P < 0.001). Correlation analysis showed that the mRNA expression of GSDMB was associated with immune infiltrates and the purity of the tumor. Upregulation of GSDMB is significantly related to immune infiltrates and poor survival in ccRCC. The results of this study indicate that GSDMB could be regarded as a biomarker for the detection of poor prognosis and potential target of immune treatment in ccRCC.