Cargando…

Plasma S-Adenosylmethionine Is Associated with Lung Injury in COVID-19

OBJECTIVE: S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. METHODS: The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kryukov, Evgeny Vladimirovich, Ivanov, Alexander Vladimirovich, Karpov, Vladimir Olegovich, Vasil'evich Aleksandrin, Valery, Dygai, Alexander Mikhaylovich, Kruglova, Maria Petrovna, Kostiuchenko, Gennady Ivanovich, Kazakov, Sergei Petrovich, Kubatiev, Aslan Amirkhanovich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702356/
https://www.ncbi.nlm.nih.gov/pubmed/34956420
http://dx.doi.org/10.1155/2021/7686374
Descripción
Sumario:OBJECTIVE: S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. METHODS: The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. RESULTS: SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = −0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. CONCLUSIONS: A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.