Cargando…

Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition

Animal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been...

Descripción completa

Detalles Bibliográficos
Autores principales: Marchwińska, Katarzyna, Gwiazdowska, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702511/
https://www.ncbi.nlm.nih.gov/pubmed/34940898
http://dx.doi.org/10.1007/s00203-021-02700-0
Descripción
Sumario:Animal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00203-021-02700-0.