Cargando…
Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning
Background: In view of the existence of light shadow, branches occlusion, and leaves overlapping conditions in the real natural environment, problems such as slow detection speed, low detection accuracy, high missed detection rate, and poor robustness in plant diseases and pests detection technology...
Autores principales: | Wang, Xuewei, Liu, Jun, Liu, Guoxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702556/ https://www.ncbi.nlm.nih.gov/pubmed/34956290 http://dx.doi.org/10.3389/fpls.2021.792244 |
Ejemplares similares
-
Tomato Pest Recognition Algorithm Based on Improved YOLOv4
por: Liu, Jun, et al.
Publicado: (2022) -
TomatoDet: Anchor-free detector for tomato detection
por: Liu, Guoxu, et al.
Publicado: (2022) -
Tomato Anomalies Detection in Greenhouse Scenarios Based on YOLO-Dense
por: Wang, Xuewei, et al.
Publicado: (2021) -
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network
por: Liu, Jun, et al.
Publicado: (2020) -
Tomato disease object detection method combining prior knowledge attention mechanism and multiscale features
por: Liu, Jun, et al.
Publicado: (2023)