Cargando…
Assessment of Drug Proarrhythmicity Using Artificial Neural Networks With in silico Deterministic Model Outputs
As part of the Comprehensive in vitro Proarrhythmia Assay initiative, methodologies for predicting the occurrence of drug-induced torsade de pointes via computer simulations have been developed and verified recently. However, their predictive performance still requires improvement. Herein, we propos...
Autores principales: | Yoo, Yedam, Marcellinus, Aroli, Jeong, Da Un, Kim, Ki-Suk, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703011/ https://www.ncbi.nlm.nih.gov/pubmed/34955882 http://dx.doi.org/10.3389/fphys.2021.761691 |
Ejemplares similares
-
Application of Convolutional Neural Networks Using Action Potential Shape for In-Silico Proarrhythmic Risk Assessment
por: Jeong, Da Un, et al.
Publicado: (2023) -
Proarrhythmic risk assessment of drugs by dV
(m)
/dt shapes using the convolutional neural network
por: Jeong, Da Un, et al.
Publicado: (2022) -
qInward variability-based in-silico proarrhythmic risk assessment of drugs using deep learning model
por: Jeong, Da Un, et al.
Publicado: (2022) -
Validation of in silico biomarkers for drug screening through ordinal logistic regression
por: Jeong, Da Un, et al.
Publicado: (2022) -
Verification of the Efficacy of Mexiletine Treatment for the A1656D Mutation on Downgrading Reentrant Tachycardia Using a 3D Cardiac Electrophysiological Model
por: Qauli, Ali Ikhsanul, et al.
Publicado: (2022)