Cargando…
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
This paper presents reliable estimation of deterioration levels via late fusion using multi-view distress images for practical inspection. The proposed method simultaneously solves the following two problems that are necessary to support the practical inspection. Since maintenance of infrastructures...
Autores principales: | Maeda, Keisuke, Ogawa, Naoki, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703264/ https://www.ncbi.nlm.nih.gov/pubmed/34940740 http://dx.doi.org/10.3390/jimaging7120273 |
Ejemplares similares
-
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
por: Ogawa, Naoki, et al.
Publicado: (2022) -
Estimation of Degradation Degree in Road Infrastructure Based on Multi-Modal ABN Using Contrastive Learning
por: Higashi, Takaaki, et al.
Publicado: (2023) -
Zero-Shot Neural Decoding with Semi-Supervised Multi-View Embedding
por: Akamatsu, Yusuke, et al.
Publicado: (2023) -
Regularization Meets Enhanced Multi-Stage Fusion Features: Making CNN More Robust against White-Box Adversarial Attacks
por: Zhang, Jiahuan, et al.
Publicado: (2022) -
Tensor-Based Emotional Category Classification via Visual Attention-Based Heterogeneous CNN Feature Fusion
por: Moroto, Yuya, et al.
Publicado: (2020)