Cargando…
Prediction and Inverse Design of Structural Colors of Nanoparticle Systems via Deep Neural Network
Noniridescent and nonfading structural colors generated from metallic and dielectric nanoparticles with extraordinary optical properties hold great promise in applications such as image display, color printing, and information security. Yet, due to the strong wavelength dependence of optical constan...
Autores principales: | Ma, Lanxin, Hu, Kaixiang, Wang, Chengchao, Yang, Jia-Yue, Liu, Linhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703294/ https://www.ncbi.nlm.nih.gov/pubmed/34947688 http://dx.doi.org/10.3390/nano11123339 |
Ejemplares similares
-
Evaluation and Design of Colored Silicon Nanoparticle Systems Using a Bidirectional Deep Neural Network
por: Zhou, Yan, et al.
Publicado: (2022) -
Inverse design of glass structure with deep graph neural networks
por: Wang, Qi, et al.
Publicado: (2021) -
The Face Inversion Effect in Deep Convolutional Neural Networks
por: Tian, Fang, et al.
Publicado: (2022) -
Deep Neural Network Inverse Design of Integrated Photonic Power Splitters
por: Tahersima, Mohammad H., et al.
Publicado: (2019) -
NEUTRON: Neural particle swarm optimization for material-aware inverse design of structural color
por: Wang, Haozhu, et al.
Publicado: (2022)