Cargando…
Molecular Biology in Treatment Decision Processes—Neuro-Oncology Edition
Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and...
Autores principales: | Krauze, Andra V., Camphausen, Kevin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703419/ https://www.ncbi.nlm.nih.gov/pubmed/34948075 http://dx.doi.org/10.3390/ijms222413278 |
Ejemplares similares
-
Bias and Class Imbalance in Oncologic Data—Towards Inclusive and Transferrable AI in Large Scale Oncology Data Sets
por: Tasci, Erdal, et al.
Publicado: (2022) -
Cost Matrix of Molecular Pathology in Glioma—Towards AI-Driven Rational Molecular Testing and Precision Care for the Future
por: Jagasia, Sarisha, et al.
Publicado: (2022) -
An Overview of CD133 as a Functional Unit of Prognosis and Treatment Resistance in Glioblastoma
por: Joyce, Thomas, et al.
Publicado: (2023) -
Hierarchical Voting-Based Feature Selection and Ensemble Learning Model Scheme for Glioma Grading with Clinical and Molecular Characteristics
por: Tasci, Erdal, et al.
Publicado: (2022) -
Analytical Considerations of Large-Scale Aptamer-Based Datasets for Translational Applications
por: Jiang, Will, et al.
Publicado: (2022)