Cargando…
The Influence of Organic Fertilizers on the Abundance of Soil Microorganism Communities, Agrochemical Indicators, and Yield in East Lithuanian Light Soils
Soil microorganisms are one of the main indicators used for assessing the stability of the soil ecosystem, the metabolism in the soil, and its fertility. The most important are the active soil microorganisms and the influence of the fertilizer applied to the soil on the abundance of these microorgan...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703430/ https://www.ncbi.nlm.nih.gov/pubmed/34961119 http://dx.doi.org/10.3390/plants10122648 |
Sumario: | Soil microorganisms are one of the main indicators used for assessing the stability of the soil ecosystem, the metabolism in the soil, and its fertility. The most important are the active soil microorganisms and the influence of the fertilizer applied to the soil on the abundance of these microorganisms. We aimed to investigate how the applied organic fertilizers affect the most active soil microorganisms, which determine the soil fertility and stability. Fungi, yeast-like fungi abundance, and abundance of three physiological groups of bacteria were analyzed: non-symbiotic diazotrophic, organotrophic, and mineral nitrogen assimilating. This study is valuable because relatively few similar studies have been performed on infertile Lithuanian soils. The first results of a long-term study were obtained. The results show the effect of fertilizers on trends in the changes of microorganism community diversity; however, more analysis is needed to assess the impact of organic fertilizers on the most active soil microorganisms. Therefore, the investigation was continued. The results of the 2020 quantitative analysis of culturable soil microorganisms show that the highest abundance of organotrophic and non-symbiotic diazotrophic bacteria were recorded during the summer season. Meanwhile, the abundance of bacteria assimilating mineral nitrogen and fungi was higher in autumn. Agrochemical parameters were determined at the beginning of the experiment. The highest concentration of N(min) in the soil was determined after fertilizing the plants with the combination of granulated poultry manure (N(170)) + biological substance Azotobacter spp. The yield of barley was calculated. It was found that the highest yield of spring barley in 2020 was obtained by fertilizing the experimental field with organic in combination with mineral fertilizers. |
---|