Cargando…
Secretory Patterns in Colleters of Apocynaceae
Colleters of Apocynaceae are glands related to different types of protection of vegetative and floral meristems through the production of mucilage or a mixture of many different compounds. Although several anatomical papers have shown histological and histochemical aspects of colleters of the family...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703501/ https://www.ncbi.nlm.nih.gov/pubmed/34961240 http://dx.doi.org/10.3390/plants10122770 |
Sumario: | Colleters of Apocynaceae are glands related to different types of protection of vegetative and floral meristems through the production of mucilage or a mixture of many different compounds. Although several anatomical papers have shown histological and histochemical aspects of colleters of the family, almost nothing is known about their secretory process. In this study, we analyzed two types of colleters in Apocynaceae: one produces mucilage and lipophilic compounds, while the other produces an exclusively mucilaginous secretion. The secretory epidermis of the colleters of Allamanda schottii and Blepharodon bicuspidatum has a dense cytoplasm with organelles responsible for the production of mucilage and lipids. This heterogeneous secretion is released through granulocrine and eccrine mechanisms and is temporarily stored in a subcuticular space before crossing the cuticle. Conversely, colleters of Mandevilla splendens and Peplonia axillaris produce only mucilage and have a very different secretory apparatus. The mechanism of secretion is granulocrine, and the exudate is firstly accumulated in a large periplasmic space and later in an intramural space before crossing the cuticle. Notably, the structure of the cuticle varies according to the secretion composition. Although the colleters of the family are histologically similar, this study demonstrates a metabolic and subcellular variability previously unknown for Apocynaceae. |
---|