Cargando…
Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance
The weak interface performance between metal and composite (IPMC) makes the composite materials susceptible to impact load. Aluminum/glass fiber/polypropylene (Al/Gf/PP) laminates were manufactured with the aluminum alloy sheets modified by nitrogen plasma surface treatment and the phosphoric acid a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703585/ https://www.ncbi.nlm.nih.gov/pubmed/34960968 http://dx.doi.org/10.3390/polym13244416 |
_version_ | 1784621499241463808 |
---|---|
author | Lin, Yanyan Li, Huaguan Zhang, Zhongwei Tao, Jie |
author_facet | Lin, Yanyan Li, Huaguan Zhang, Zhongwei Tao, Jie |
author_sort | Lin, Yanyan |
collection | PubMed |
description | The weak interface performance between metal and composite (IPMC) makes the composite materials susceptible to impact load. Aluminum/glass fiber/polypropylene (Al/Gf/PP) laminates were manufactured with the aluminum alloy sheets modified by nitrogen plasma surface treatment and the phosphoric acid anodizing method, respectively. FEM models of Al/Gf/PP laminates under low-velocity impact were established in ABAQUS/Explicit based on the generated data including the model I and II interlaminar fracture toughness. Low-velocity impact tests were performed to investigate the impact resistance of Al/Gf/PP laminates including load traces, failure mechanism, and energy absorption. The results showed that delamination was the main failure mode of two kinds of laminates under the impact energy of 20 J and 30 J. When the impact energy was between 40 J and 50 J, there were metal cracks on the rear surface of the plasma pretreated specimens, which possessed higher energy absorption and impact resistance, although the integrity of the laminates could not be preserved. Since the residual compressive stress was generated during the cooling process, the laminates were more susceptible to stretching rather than delamination. For impact energy (60 J) causing the through-the-thickness crack of two kinds of laminates, plasma pretreated specimens exhibited higher SEA values close to 9 Jm(2)/kg due to better IPMC. Combined with the FEM simulation results, the interface played a role in stress transmission and specimens with better IPMC enabled the laminates to absorb more energy. |
format | Online Article Text |
id | pubmed-8703585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87035852021-12-25 Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance Lin, Yanyan Li, Huaguan Zhang, Zhongwei Tao, Jie Polymers (Basel) Article The weak interface performance between metal and composite (IPMC) makes the composite materials susceptible to impact load. Aluminum/glass fiber/polypropylene (Al/Gf/PP) laminates were manufactured with the aluminum alloy sheets modified by nitrogen plasma surface treatment and the phosphoric acid anodizing method, respectively. FEM models of Al/Gf/PP laminates under low-velocity impact were established in ABAQUS/Explicit based on the generated data including the model I and II interlaminar fracture toughness. Low-velocity impact tests were performed to investigate the impact resistance of Al/Gf/PP laminates including load traces, failure mechanism, and energy absorption. The results showed that delamination was the main failure mode of two kinds of laminates under the impact energy of 20 J and 30 J. When the impact energy was between 40 J and 50 J, there were metal cracks on the rear surface of the plasma pretreated specimens, which possessed higher energy absorption and impact resistance, although the integrity of the laminates could not be preserved. Since the residual compressive stress was generated during the cooling process, the laminates were more susceptible to stretching rather than delamination. For impact energy (60 J) causing the through-the-thickness crack of two kinds of laminates, plasma pretreated specimens exhibited higher SEA values close to 9 Jm(2)/kg due to better IPMC. Combined with the FEM simulation results, the interface played a role in stress transmission and specimens with better IPMC enabled the laminates to absorb more energy. MDPI 2021-12-16 /pmc/articles/PMC8703585/ /pubmed/34960968 http://dx.doi.org/10.3390/polym13244416 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lin, Yanyan Li, Huaguan Zhang, Zhongwei Tao, Jie Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance |
title | Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance |
title_full | Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance |
title_fullStr | Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance |
title_full_unstemmed | Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance |
title_short | Low-Velocity Impact Resistance of Al/Gf/PP Laminates with Different Interface Performance |
title_sort | low-velocity impact resistance of al/gf/pp laminates with different interface performance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703585/ https://www.ncbi.nlm.nih.gov/pubmed/34960968 http://dx.doi.org/10.3390/polym13244416 |
work_keys_str_mv | AT linyanyan lowvelocityimpactresistanceofalgfpplaminateswithdifferentinterfaceperformance AT lihuaguan lowvelocityimpactresistanceofalgfpplaminateswithdifferentinterfaceperformance AT zhangzhongwei lowvelocityimpactresistanceofalgfpplaminateswithdifferentinterfaceperformance AT taojie lowvelocityimpactresistanceofalgfpplaminateswithdifferentinterfaceperformance |