Cargando…
Three-Dimensional Semantic Segmentation of Pituitary Adenomas Based on the Deep Learning Framework-nnU-Net: A Clinical Perspective
This study developed and evaluated nnU-Net models for three-dimensional semantic segmentation of pituitary adenomas (PAs) from contrast-enhanced T1 (T1ce) images, with aims to train a deep learning-based model cost-effectively and apply it to clinical practice. Methods: This study was conducted in t...
Autores principales: | Shu, Xujun, Zhou, Yijie, Li, Fangye, Zhou, Tao, Meng, Xianghui, Wang, Fuyu, Zhang, Zhizhong, Pu, Jian, Xu, Bainan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703586/ https://www.ncbi.nlm.nih.gov/pubmed/34945322 http://dx.doi.org/10.3390/mi12121473 |
Ejemplares similares
-
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022) -
Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net
por: Hu, Yifan, et al.
Publicado: (2023) -
Lifelong nnU-Net: a framework for standardized medical continual learning
por: González, Camila, et al.
Publicado: (2023) -
Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models
por: Ferrante, Matteo, et al.
Publicado: (2022) -
An open-source nnU-net algorithm for automatic segmentation of MRI scans in the male pelvis for adaptive radiotherapy
por: Lorenzen, Ebbe Laugaard, et al.
Publicado: (2023)