Cargando…
Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP
Silica fume (SF) is a mineral additive that is widely used in the construction industry when producing sustainable concrete. The integration of SF in concrete as a partial replacement for cement has several evident benefits, including reduced CO(2) emissions, cost-effective concrete, increased durab...
Autores principales: | Nafees, Afnan, Javed, Muhammad Faisal, Khan, Sherbaz, Nazir, Kashif, Farooq, Furqan, Aslam, Fahid, Musarat, Muhammad Ali, Vatin, Nikolai Ivanovich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703652/ https://www.ncbi.nlm.nih.gov/pubmed/34947124 http://dx.doi.org/10.3390/ma14247531 |
Ejemplares similares
-
Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques
por: Nafees, Afnan, et al.
Publicado: (2021) -
Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF
por: Nafees, Afnan, et al.
Publicado: (2022) -
Concrete by Preplaced Aggregate Method Using Silica Fume and Polypropylene Fibres
por: Khanzada, Farooq Azam, et al.
Publicado: (2022) -
Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming
por: Ilyas, Israr, et al.
Publicado: (2021) -
Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence
por: Khan, Sangeen, et al.
Publicado: (2021)