Cargando…

What Is the Role of HLA-I on Cancer Derived Extracellular Vesicles? Defining the Challenges in Characterisation and Potential Uses of This Ligandome

The Human Leukocyte Antigen class I (HLA-I) system is an essential part of the immune system that is fundamental to the successful activation of cytotoxic lymphocytes, and an effective subsequent immune attack against both pathogen-infected and cancer cells. The importance of cytotoxic T cell activi...

Descripción completa

Detalles Bibliográficos
Autores principales: Boyne, Caitlin, Lennox, Debra, Beech, Olivia, Powis, Simon J., Kumar, Pankaj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703738/
https://www.ncbi.nlm.nih.gov/pubmed/34948350
http://dx.doi.org/10.3390/ijms222413554
Descripción
Sumario:The Human Leukocyte Antigen class I (HLA-I) system is an essential part of the immune system that is fundamental to the successful activation of cytotoxic lymphocytes, and an effective subsequent immune attack against both pathogen-infected and cancer cells. The importance of cytotoxic T cell activity and ability to detect foreign cancer-related antigenic peptides has recently been highlighted by the successful application of monoclonal antibody-based checkpoint inhibitors as novel immune therapies. Thus, there is an increased interest in fully characterising the repertoire of peptides that are being presented to cytotoxic CD8+ T cells by cancer cells. However, HLA-I is also known to be present on the surface of extracellular vesicles, which are released by most if not all cancer cells. Whilst the peptide ligandome presented by cell surface HLA class I molecules on cancer cells has been studied extensively, the ligandome of extracellular vesicles remains relatively poorly defined. Here, we will describe the current understanding of the HLA-I peptide ligandome and its role on cancer-derived extracellular vesicles, and evaluate the aspects of the system that have the potential to advance immune-based therapeutic approaches for the effective treatment of cancer.