Cargando…
Abnormal Activity Recognition from Surveillance Videos Using Convolutional Neural Network
Background and motivation: Every year, millions of Muslims worldwide come to Mecca to perform the Hajj. In order to maintain the security of the pilgrims, the Saudi government has installed about 5000 closed circuit television (CCTV) cameras to monitor crowd activity efficiently. Problem: As a resul...
Autores principales: | Habib, Shabana, Hussain, Altaf, Albattah, Waleed, Islam, Muhammad, Khan, Sheroz, Khan, Rehan Ullah, Khan, Khalil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703748/ https://www.ncbi.nlm.nih.gov/pubmed/34960386 http://dx.doi.org/10.3390/s21248291 |
Ejemplares similares
-
Advances and Trends in Real Time Visual Crowd Analysis
por: Khan, Khalil, et al.
Publicado: (2020) -
A Deep-Learning Model for Real-Time Red Palm Weevil Detection and Localization
por: Alsanea, Majed, et al.
Publicado: (2022) -
A Multi-Task Framework for Facial Attributes Classification through End-to-End Face Parsing and Deep Convolutional Neural Networks
por: Khan, Khalil, et al.
Publicado: (2020) -
Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos
por: Hussain, Altaf, et al.
Publicado: (2022) -
An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
por: Ullah, Waseem, et al.
Publicado: (2021)