Cargando…
Nonlinear Models of Thermo-Viscoelastic Materials
The paper develops a general scheme for viscoelastic materials, where the constitutive properties are described by means of measures of strain, stress, heat flux, and their time derivatives. The constitutive functions are required to be consistent with the second law of thermodynamics. Indeed, a new...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703775/ https://www.ncbi.nlm.nih.gov/pubmed/34947208 http://dx.doi.org/10.3390/ma14247617 |
_version_ | 1784621545698623488 |
---|---|
author | Giorgi, Claudio Morro, Angelo |
author_facet | Giorgi, Claudio Morro, Angelo |
author_sort | Giorgi, Claudio |
collection | PubMed |
description | The paper develops a general scheme for viscoelastic materials, where the constitutive properties are described by means of measures of strain, stress, heat flux, and their time derivatives. The constitutive functions are required to be consistent with the second law of thermodynamics. Indeed, a new view is associated with the second law: the non-negative expression of the entropy production is set equal to a further constitutive function. The introduction of the entropy production as a constitutive function allows for a much wider range of models. Within this range, a scheme to obtain nonlinear models of thermo-viscoelastic materials subject to large deformations is established. Notably, the Kelvin–Voigt, Maxwell, Burgers, and Oldroyd-B viscoelastic models, along with the Maxwell–Cattaneo heat conduction, are obtained as special cases. The scheme allows also for modelling the visco-plastic materials, such as the Prandtl–Reuss work-hardening function and the Bingham–Norton fluid. |
format | Online Article Text |
id | pubmed-8703775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87037752021-12-25 Nonlinear Models of Thermo-Viscoelastic Materials Giorgi, Claudio Morro, Angelo Materials (Basel) Article The paper develops a general scheme for viscoelastic materials, where the constitutive properties are described by means of measures of strain, stress, heat flux, and their time derivatives. The constitutive functions are required to be consistent with the second law of thermodynamics. Indeed, a new view is associated with the second law: the non-negative expression of the entropy production is set equal to a further constitutive function. The introduction of the entropy production as a constitutive function allows for a much wider range of models. Within this range, a scheme to obtain nonlinear models of thermo-viscoelastic materials subject to large deformations is established. Notably, the Kelvin–Voigt, Maxwell, Burgers, and Oldroyd-B viscoelastic models, along with the Maxwell–Cattaneo heat conduction, are obtained as special cases. The scheme allows also for modelling the visco-plastic materials, such as the Prandtl–Reuss work-hardening function and the Bingham–Norton fluid. MDPI 2021-12-10 /pmc/articles/PMC8703775/ /pubmed/34947208 http://dx.doi.org/10.3390/ma14247617 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Giorgi, Claudio Morro, Angelo Nonlinear Models of Thermo-Viscoelastic Materials |
title | Nonlinear Models of Thermo-Viscoelastic Materials |
title_full | Nonlinear Models of Thermo-Viscoelastic Materials |
title_fullStr | Nonlinear Models of Thermo-Viscoelastic Materials |
title_full_unstemmed | Nonlinear Models of Thermo-Viscoelastic Materials |
title_short | Nonlinear Models of Thermo-Viscoelastic Materials |
title_sort | nonlinear models of thermo-viscoelastic materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703775/ https://www.ncbi.nlm.nih.gov/pubmed/34947208 http://dx.doi.org/10.3390/ma14247617 |
work_keys_str_mv | AT giorgiclaudio nonlinearmodelsofthermoviscoelasticmaterials AT morroangelo nonlinearmodelsofthermoviscoelasticmaterials |