Cargando…

Method for Mitigating Stray Current Corrosion in Buried Pipelines Using Calcareous Deposits

Stray current corrosion in buried pipelines can cause serious material damage in a short period of time. However, the available methods for mitigating stray current corrosion are still insufficient. In this study, as a countermeasure against stray current corrosion, calcareous depositions were appli...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Sin-Jae, Hong, Min-Sung, Kim, Jung-Gu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703812/
https://www.ncbi.nlm.nih.gov/pubmed/34947494
http://dx.doi.org/10.3390/ma14247905
Descripción
Sumario:Stray current corrosion in buried pipelines can cause serious material damage in a short period of time. However, the available methods for mitigating stray current corrosion are still insufficient. In this study, as a countermeasure against stray current corrosion, calcareous depositions were applied to reduce the total amount of current flowing into pipelines and to prevent corrosion. This study examined the reduction of stray current corrosion via the formation of calcareous deposit layers, composed of Ca, Mg, and mixed Ca and Mg, at the current inflow area. To verify the deposited layers, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were performed. The electrochemical tests revealed that all three types of calcareous deposits were able to effectively act as current barriers, and that they decreased the inflow current at the cathodic site. Among the deposits, the CaCO(3) layer mitigated the stray current most effectively, as it was not affected by Mg(OH)(2), which interferes with the growth of CaCO(3). The calcium-based layer was very thick and dense, and it effectively blocked the inflowing stray current, compared with the other layers.