Cargando…
Development of SSR Databases Available for Both NGS and Capillary Electrophoresis in Apple, Pear and Tea
Developing new varieties in fruit and tea breeding programs is very costly and labor-intensive. Thus, establishing a variety discrimination system is important for protecting breeders’ rights and producers’ profits. Simple sequence repeat (SSR) databases that can be utilized for both next-generation...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703814/ https://www.ncbi.nlm.nih.gov/pubmed/34961266 http://dx.doi.org/10.3390/plants10122796 |
Sumario: | Developing new varieties in fruit and tea breeding programs is very costly and labor-intensive. Thus, establishing a variety discrimination system is important for protecting breeders’ rights and producers’ profits. Simple sequence repeat (SSR) databases that can be utilized for both next-generation sequencing (SSR-GBS) and polymerase chain reaction–capillary electrophoresis (PCR-CE) would be very useful in variety discrimination. In the present study, SSRs with tri-, tetra- and pentanucleotide repeats were examined in apple, pear and tea. Out of 37 SSRs that showed clear results in PCR-CE, 27 were suitable for SSR-GBS. Among the remaining markers, there was allele dropout for some markers that caused differences between the results of PCR-CE and SSR-GBS. For the selected 27 markers, the alleles detected by SSR-GBS were comparable to those detected by PCR-CE. Furthermore, we developed a computational pipeline for automated genotyping using SSR-GBS by setting a value “α” for each marker, a criterion whether a genotype is homozygous or heterozygous based on allele frequency. The set of 27 markers contains 10, 8 and 9 SSRs for apple, pear and tea, respectively, that are useful for both PCR-CE and SSR-GBS and suitable for automation. The databases help researchers discriminate varieties in various ways depending on sample size, markers and methods. |
---|