Cargando…
Enhancing EEG-Based Mental Stress State Recognition Using an Improved Hybrid Feature Selection Algorithm
In real-life applications, electroencephalogram (EEG) signals for mental stress recognition require a conventional wearable device. This, in turn, requires an efficient number of EEG channels and an optimal feature set. This study aims to identify an optimal feature subset that can discriminate ment...
Autores principales: | Hag, Ala, Handayani, Dini, Altalhi, Maryam, Pillai, Thulasyammal, Mantoro, Teddy, Kit, Mun Hou, Al-Shargie, Fares |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703860/ https://www.ncbi.nlm.nih.gov/pubmed/34960469 http://dx.doi.org/10.3390/s21248370 |
Ejemplares similares
-
EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features
por: Hag, Ala, et al.
Publicado: (2021) -
Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters
por: Hag, Ala, et al.
Publicado: (2023) -
Electroencephalogram (EEG) dataset with porn addiction and healthy teenagers under rest and executive function task
por: Kang, Xiaoxi, et al.
Publicado: (2021) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
EEG Signal Feature Selection Algorithm and Support Vector Machine Model in Patient's Fatigue Recognition
por: Chitti, Sridevi, et al.
Publicado: (2021)