Cargando…

A Chemical-Transport-Mechanics Numerical Model for Concrete under Sulfate Attack

Sulfate attack is one of the crucial causes for the structural performance degradation of reinforced concrete infrastructures. Herein, a comprehensive multiphase mesoscopic numerical model is proposed to systematically study the chemical reaction-diffusion-mechanical mechanism of concrete under sulf...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xuandong, Gu, Xin, Xia, Xiaozhou, Li, Xing, Zhang, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703936/
https://www.ncbi.nlm.nih.gov/pubmed/34947305
http://dx.doi.org/10.3390/ma14247710
Descripción
Sumario:Sulfate attack is one of the crucial causes for the structural performance degradation of reinforced concrete infrastructures. Herein, a comprehensive multiphase mesoscopic numerical model is proposed to systematically study the chemical reaction-diffusion-mechanical mechanism of concrete under sulfate attack. Unlike existing models, the leaching of solid-phase calcium and the dissolution of solid-phase aluminate are modeled simultaneously in the developed model by introducing dissolution equilibrium equations. Additionally, a calibrated time-dependent model of sulfate concentration is suggested as the boundary condition. The reliability of the proposed model is verified by the third-party experiments from multiple perspectives. Further investigations reveal that the sulfate attack ability is underestimated if the solid-phase calcium leaching is ignored, and the concrete expansion rate is overestimated if the dissolution of solid-phase aluminate is not modeled in the simulation. More importantly, the sulfate attack ability and the concrete expansion rate is overestimated if the time-dependent boundary of sulfate concentration is not taken into consideration. Besides, the sulfate ion diffusion trajectories validate the promoting effect of interface transition zone on the sulfate ion diffusion. The research of this paper provides a theoretical support for the durability design of concrete under sulfate attack.