Cargando…
Predicting Human Motion Signals Using Modern Deep Learning Techniques and Smartphone Sensors
The global adoption of smartphone technology affords many conveniences, and not surprisingly, healthcare applications using wearable sensors like smartphones have received much attention. Among the various potential applications and research related to healthcare, recent studies have been conducted...
Autores principales: | Kim, Taehwan, Park, Jeongho, Lee, Juwon, Park, Jooyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703955/ https://www.ncbi.nlm.nih.gov/pubmed/34960368 http://dx.doi.org/10.3390/s21248270 |
Ejemplares similares
-
Smartphone Sensor-Based Human Motion Characterization with Neural Stochastic Differential Equations and Transformer Model
por: Lee, Juwon, et al.
Publicado: (2022) -
Co-Evolution of Predator-Prey Ecosystems by Reinforcement Learning Agents
por: Park, Jeongho, et al.
Publicado: (2021) -
Characterizing Dynamic Walking Patterns and Detecting Falls with Wearable Sensors Using Gaussian Process Methods
por: Kim, Taehwan, et al.
Publicado: (2017) -
Two-Stage Latent Dynamics Modeling and Filtering for Characterizing Individual Walking and Running Patterns with Smartphone Sensors
por: Kim, Jaein, et al.
Publicado: (2019) -
Prediction of Driver’s Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques
por: Kim, Il-Hwan, et al.
Publicado: (2017)