Cargando…

Identification of a New Badnavirus in the Chinaberry (Melia azedarach) Tree and Establishment of a LAMP-LFD Assay for Its Rapid and Visual Detection

The Chinaberry tree, a member of the Meliaceae family, is cultivated in China for use in traditional medicines. In 2020, Chinaberry trees with leaf deformation symptoms were found in Hangzhou, Zhejiang province, China. In order to identify possible pathogenic viruses, a symptomatic sample was subjec...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Huixin, Tang, Jintian, Sun, Kai, Yu, Xiaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704090/
https://www.ncbi.nlm.nih.gov/pubmed/34960677
http://dx.doi.org/10.3390/v13122408
Descripción
Sumario:The Chinaberry tree, a member of the Meliaceae family, is cultivated in China for use in traditional medicines. In 2020, Chinaberry trees with leaf deformation symptoms were found in Hangzhou, Zhejiang province, China. In order to identify possible pathogenic viruses, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to the identification of a novel badnavirus, provisionally designated Chinaberry tree badnavirus 1 (ChTBV1). With the recent development of China’s seedling industry and increasing online shopping platforms, the risk of tree virus transmission has increased substantially. Therefore, it is important to detect the occurrence of ChTBV1 to ensure the safety of the Chinaberry tree seedling industry. Here, we describe the development and validation of a sensitive and robust method relying on a loop-mediated isothermal amplification (LAMP) assay, targeting a 197 nt region, to detect ChTBV1 from Chinaberry tree leaves. The LAMP assay was also adapted for rapid visualization of results by a lateral flow dipstick chromatographic detection method.