Cargando…
A blind randomized validated convolutional neural network for auto‐segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy
BACKGROUND: Delineation of clinical target volume (CTV) for radiotherapy is a time‐consuming and labor‐intensive work. This study aims to propose a novel convolutional neural network (CNN)‐based model for fast auto‐segmentation of CTV. To evaluate its performance and clinical utility, a blind random...
Autores principales: | Wu, Yijun, Kang, Kai, Han, Chang, Wang, Shaobin, Chen, Qi, Chen, Yu, Zhang, Fuquan, Liu, Zhikai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704175/ https://www.ncbi.nlm.nih.gov/pubmed/34811957 http://dx.doi.org/10.1002/cam4.4441 |
Ejemplares similares
-
Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks
por: Liu, Zhikai, et al.
Publicado: (2021) -
Automatic Segmentation of Clinical Target Volume and Organs-at-Risk for Breast Conservative Radiotherapy Using a Convolutional Neural Network
por: Liu, Zhikai, et al.
Publicado: (2021) -
Neoadjuvant chemoradiotherapy or radiotherapy in patients aged 75 years or older with locally advanced rectal cancer
por: Liu, Xiaoliang, et al.
Publicado: (2020) -
Clinical evaluation on automatic segmentation results of convolutional neural networks in rectal cancer radiotherapy
por: Li, Jing, et al.
Publicado: (2023) -
Dose-volume-based evaluation of convolutional neural network-based auto-segmentation of thoracic organs at risk
por: Johnston, Noémie, et al.
Publicado: (2022)