Cargando…

Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm

[Image: see text] Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Lettner, Thomas, Gyger, Samuel, Zeuner, Katharina D., Schweickert, Lucas, Steinhauer, Stephan, Reuterskiöld Hedlund, Carl, Stroj, Sandra, Rastelli, Armando, Hammar, Mattias, Trotta, Rinaldo, Jöns, Klaus D., Zwiller, Val
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704189/
https://www.ncbi.nlm.nih.gov/pubmed/34894699
http://dx.doi.org/10.1021/acs.nanolett.1c04024
_version_ 1784621647132622848
author Lettner, Thomas
Gyger, Samuel
Zeuner, Katharina D.
Schweickert, Lucas
Steinhauer, Stephan
Reuterskiöld Hedlund, Carl
Stroj, Sandra
Rastelli, Armando
Hammar, Mattias
Trotta, Rinaldo
Jöns, Klaus D.
Zwiller, Val
author_facet Lettner, Thomas
Gyger, Samuel
Zeuner, Katharina D.
Schweickert, Lucas
Steinhauer, Stephan
Reuterskiöld Hedlund, Carl
Stroj, Sandra
Rastelli, Armando
Hammar, Mattias
Trotta, Rinaldo
Jöns, Klaus D.
Zwiller, Val
author_sort Lettner, Thomas
collection PubMed
description [Image: see text] Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state. Here, we show fine-structure suppression for InAs quantum dots using micromachined piezoelectric actuators and demonstrate generation of highly entangled photons at 1550 nm. At the lowest fine-structure setting, we obtain a maximum fidelity of 90.0 ± 2.7% (concurrence of 87.5 ± 3.1%). The concurrence remains high also for moderate (weak) temporal filtering, with values close to 80% (50%), corresponding to 30% (80%) of collected photons, respectively. The presented fine-structure control opens the way for exploiting entangled photons from quantum dots in fiber-based quantum communication protocols.
format Online
Article
Text
id pubmed-8704189
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-87041892021-12-27 Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm Lettner, Thomas Gyger, Samuel Zeuner, Katharina D. Schweickert, Lucas Steinhauer, Stephan Reuterskiöld Hedlund, Carl Stroj, Sandra Rastelli, Armando Hammar, Mattias Trotta, Rinaldo Jöns, Klaus D. Zwiller, Val Nano Lett [Image: see text] Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state. Here, we show fine-structure suppression for InAs quantum dots using micromachined piezoelectric actuators and demonstrate generation of highly entangled photons at 1550 nm. At the lowest fine-structure setting, we obtain a maximum fidelity of 90.0 ± 2.7% (concurrence of 87.5 ± 3.1%). The concurrence remains high also for moderate (weak) temporal filtering, with values close to 80% (50%), corresponding to 30% (80%) of collected photons, respectively. The presented fine-structure control opens the way for exploiting entangled photons from quantum dots in fiber-based quantum communication protocols. American Chemical Society 2021-12-13 2021-12-22 /pmc/articles/PMC8704189/ /pubmed/34894699 http://dx.doi.org/10.1021/acs.nanolett.1c04024 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Lettner, Thomas
Gyger, Samuel
Zeuner, Katharina D.
Schweickert, Lucas
Steinhauer, Stephan
Reuterskiöld Hedlund, Carl
Stroj, Sandra
Rastelli, Armando
Hammar, Mattias
Trotta, Rinaldo
Jöns, Klaus D.
Zwiller, Val
Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm
title Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm
title_full Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm
title_fullStr Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm
title_full_unstemmed Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm
title_short Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm
title_sort strain-controlled quantum dot fine structure for entangled photon generation at 1550 nm
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704189/
https://www.ncbi.nlm.nih.gov/pubmed/34894699
http://dx.doi.org/10.1021/acs.nanolett.1c04024
work_keys_str_mv AT lettnerthomas straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT gygersamuel straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT zeunerkatharinad straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT schweickertlucas straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT steinhauerstephan straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT reuterskioldhedlundcarl straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT strojsandra straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT rastelliarmando straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT hammarmattias straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT trottarinaldo straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT jonsklausd straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm
AT zwillerval straincontrolledquantumdotfinestructureforentangledphotongenerationat1550nm