Cargando…
Quantum Buckling in Metal–Organic Framework Materials
[Image: see text] Metal–organic frameworks are porous materials composed of metal ions or clusters coordinated by organic molecules. As a response to applied uniaxial pressure, molecules with a straight shape in the framework start to buckle. At sufficiently low temperatures, this buckling has a qua...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704192/ https://www.ncbi.nlm.nih.gov/pubmed/34881896 http://dx.doi.org/10.1021/acs.nanolett.1c03579 |
Sumario: | [Image: see text] Metal–organic frameworks are porous materials composed of metal ions or clusters coordinated by organic molecules. As a response to applied uniaxial pressure, molecules with a straight shape in the framework start to buckle. At sufficiently low temperatures, this buckling has a quantum nature described by a superposition of degenerate buckling states. Buckling states of adjacent molecules couple in a transverse field Ising type behavior. Based on the example of the metal organic framework topology MOF-5, we derived the phase diagram under applied strain, showing a normal phase, a parabuckling phase, and a ferrobuckling phase. At zero temperature, quantum phase transitions between the three phases can be induced by strain. This novel type of order opens a new path toward strain induced quantum phases. |
---|