Cargando…

Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis

Objective: Prostate cancer (PCa) is the most common malignant tumor diagnosed in men in developed countries. In developing countries, the PCa morbidity and mortality rates are also increasing rapidly. Since androgen receptor (AR) is a key driver and plays a critical role in the regulation of PCa dev...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Yue, Xue, Mengxia, Wang, Qizhi, Hong, Xiaodan, Wang, Xinyu, Zhou, Fang, Sun, Jianguo, Wang, Guangji, Peng, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704202/
https://www.ncbi.nlm.nih.gov/pubmed/34948018
http://dx.doi.org/10.3390/ijms222413222
_version_ 1784621650290933760
author Gu, Yue
Xue, Mengxia
Wang, Qizhi
Hong, Xiaodan
Wang, Xinyu
Zhou, Fang
Sun, Jianguo
Wang, Guangji
Peng, Ying
author_facet Gu, Yue
Xue, Mengxia
Wang, Qizhi
Hong, Xiaodan
Wang, Xinyu
Zhou, Fang
Sun, Jianguo
Wang, Guangji
Peng, Ying
author_sort Gu, Yue
collection PubMed
description Objective: Prostate cancer (PCa) is the most common malignant tumor diagnosed in men in developed countries. In developing countries, the PCa morbidity and mortality rates are also increasing rapidly. Since androgen receptor (AR) is a key driver and plays a critical role in the regulation of PCa development, AR-targeted agents provide a key component of current therapy regimens. However, even new-generation AR antagonists are prone to drug resistance, and there is currently no effective strategy for overcoming advanced PCa aggressiveness, including drug-resistance progression. The aim of this study was to evaluate the potential efficacy and novel therapy strategy of proxalutamide (a newly developed AR antagonist) in PCa. Methods: Four PCa cell lines with various biological heterogeneities were utilized in this study, namely, androgen-sensitive/-insensitive with/without AR expression. Proliferation, migration and apoptosis assays in PCa cells were used to evaluate the effective therapeutic activity of proxalutamide. The changes in lipid droplet accumulation and lipidomic profiles were analyzed to determine the influence of proxalutamide on lipogenesis in PCa cells. The molecular basis of the effects of proxalutamide on lipogenesis and the AR axis was then further investigated. Results: Proxalutamide significantly inhibited the proliferation and migration of PCa cells, and its inhibitory effect was superior to that of enzalutamide (Enz, second-generation AR antagonist). Proxalutamide induced the caspase-dependent apoptosis of PCa cells. Proxalutamide significantly diminished the level of lipid droplets in PCa cells, changed the lipid profile of PCa cells and reduced the content of most lipids (especially triglycerides) in PCa cells. Proxalutamide attenuated de novo lipogenesis by inhibiting the expression of ATP citrate lyase (ACL), acetyl CoA carboxylase (ACC), fatty acid synthase (FASN) and sterol regulatory element-binding protein-1 (SREBP-1). Moreover, proxalutamide also decreased AR expression in PCa cells, and its inhibitory effect on lipogenesis did not depend on its ability to down-regulate AR expression. However, Enz had no effect on AR expression, lipid accumulation or lipid de novo synthesis in PCa cells. Conclusions: By co-targeting the AR axis and endogenous adipogenesis, a novel and promising strategy was established for proxalutamide to combat the progress of PCa. The unique effect of proxalutamide on the metabolic reprogramming of PCa provides a potential solution to overcome the resistance of current AR-targeted therapy, which will help to effectively prolong its clinical service life.
format Online
Article
Text
id pubmed-8704202
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87042022021-12-25 Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis Gu, Yue Xue, Mengxia Wang, Qizhi Hong, Xiaodan Wang, Xinyu Zhou, Fang Sun, Jianguo Wang, Guangji Peng, Ying Int J Mol Sci Article Objective: Prostate cancer (PCa) is the most common malignant tumor diagnosed in men in developed countries. In developing countries, the PCa morbidity and mortality rates are also increasing rapidly. Since androgen receptor (AR) is a key driver and plays a critical role in the regulation of PCa development, AR-targeted agents provide a key component of current therapy regimens. However, even new-generation AR antagonists are prone to drug resistance, and there is currently no effective strategy for overcoming advanced PCa aggressiveness, including drug-resistance progression. The aim of this study was to evaluate the potential efficacy and novel therapy strategy of proxalutamide (a newly developed AR antagonist) in PCa. Methods: Four PCa cell lines with various biological heterogeneities were utilized in this study, namely, androgen-sensitive/-insensitive with/without AR expression. Proliferation, migration and apoptosis assays in PCa cells were used to evaluate the effective therapeutic activity of proxalutamide. The changes in lipid droplet accumulation and lipidomic profiles were analyzed to determine the influence of proxalutamide on lipogenesis in PCa cells. The molecular basis of the effects of proxalutamide on lipogenesis and the AR axis was then further investigated. Results: Proxalutamide significantly inhibited the proliferation and migration of PCa cells, and its inhibitory effect was superior to that of enzalutamide (Enz, second-generation AR antagonist). Proxalutamide induced the caspase-dependent apoptosis of PCa cells. Proxalutamide significantly diminished the level of lipid droplets in PCa cells, changed the lipid profile of PCa cells and reduced the content of most lipids (especially triglycerides) in PCa cells. Proxalutamide attenuated de novo lipogenesis by inhibiting the expression of ATP citrate lyase (ACL), acetyl CoA carboxylase (ACC), fatty acid synthase (FASN) and sterol regulatory element-binding protein-1 (SREBP-1). Moreover, proxalutamide also decreased AR expression in PCa cells, and its inhibitory effect on lipogenesis did not depend on its ability to down-regulate AR expression. However, Enz had no effect on AR expression, lipid accumulation or lipid de novo synthesis in PCa cells. Conclusions: By co-targeting the AR axis and endogenous adipogenesis, a novel and promising strategy was established for proxalutamide to combat the progress of PCa. The unique effect of proxalutamide on the metabolic reprogramming of PCa provides a potential solution to overcome the resistance of current AR-targeted therapy, which will help to effectively prolong its clinical service life. MDPI 2021-12-08 /pmc/articles/PMC8704202/ /pubmed/34948018 http://dx.doi.org/10.3390/ijms222413222 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gu, Yue
Xue, Mengxia
Wang, Qizhi
Hong, Xiaodan
Wang, Xinyu
Zhou, Fang
Sun, Jianguo
Wang, Guangji
Peng, Ying
Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis
title Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis
title_full Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis
title_fullStr Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis
title_full_unstemmed Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis
title_short Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis
title_sort novel strategy of proxalutamide for the treatment of prostate cancer through coordinated blockade of lipogenesis and androgen receptor axis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704202/
https://www.ncbi.nlm.nih.gov/pubmed/34948018
http://dx.doi.org/10.3390/ijms222413222
work_keys_str_mv AT guyue novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT xuemengxia novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT wangqizhi novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT hongxiaodan novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT wangxinyu novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT zhoufang novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT sunjianguo novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT wangguangji novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis
AT pengying novelstrategyofproxalutamideforthetreatmentofprostatecancerthroughcoordinatedblockadeoflipogenesisandandrogenreceptoraxis