Cargando…
A Novel Feature-Engineered–NGBoost Machine-Learning Framework for Fraud Detection in Electric Power Consumption Data
This study presents a novel feature-engineered–natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially executed in three stages: data pre-processing, feature engineering, and model evaluati...
Autores principales: | Hussain, Saddam, Mustafa, Mohd Wazir, Al-Shqeerat, Khalil Hamdi Ateyeh, Saeed, Faisal, Al-rimy, Bander Ali Saleh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704372/ https://www.ncbi.nlm.nih.gov/pubmed/34960516 http://dx.doi.org/10.3390/s21248423 |
Ejemplares similares
-
An Adaptive Early Stopping Technique for DenseNet169-Based Knee Osteoarthritis Detection Model
por: Al-rimy, Bander Ali Saleh, et al.
Publicado: (2023) -
A Fuzzy-Based Context-Aware Misbehavior Detecting Scheme for Detecting Rogue Nodes in Vehicular Ad Hoc Network
por: Ghaleb, Fuad A., et al.
Publicado: (2022) -
Securing Secrets in Cyber-Physical Systems: A Cutting-Edge Privacy Approach with Consortium Blockchain
por: Ali, Aitizaz, et al.
Publicado: (2023) -
Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique for Node Starvation Problem in Wireless Mesh Networks
por: Ghaleb, Fuad A., et al.
Publicado: (2021) -
Empowering Precision Medicine: Unlocking Revolutionary Insights through Blockchain-Enabled Federated Learning and Electronic Medical Records
por: Ali, Aitizaz, et al.
Publicado: (2023)