Cargando…
Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material
This paper aims at further advancing the knowledge about the cyclic behavior of FRP strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from a numerical model based on concepts of based on fracture mechanics and already presented and validated by the author...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704541/ https://www.ncbi.nlm.nih.gov/pubmed/34947340 http://dx.doi.org/10.3390/ma14247753 |
_version_ | 1784621731239952384 |
---|---|
author | Martinelli, Enzo Caggiano, Antonio |
author_facet | Martinelli, Enzo Caggiano, Antonio |
author_sort | Martinelli, Enzo |
collection | PubMed |
description | This paper aims at further advancing the knowledge about the cyclic behavior of FRP strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from a numerical model based on concepts of based on fracture mechanics and already presented and validated by the authors in previous works. Particularly, it assumes that fracture processes leading to debonding develop in pure mode II, as is widely accepted in the literature. Starting from this assumption (and having clear both its advantages acnd shortcomings), the results of a parametric analysis are presented with the aim of investigating the role of both the mechanical properties of the interface bond–slip law and a relevant geometric quantity such as the bond length. The obtained results show the influence of the interface bond–slip law and FRP bond length on the resulting cyclic response of the FRP-to-concrete joint, the latter characterized in terms of S-N curves generally adopted in the theory of fatigue. Far from deriving a fully defined correlation among those parameters, the results indicate general trends that can be helpful to drive further investigation, both experimental and numerical in nature. |
format | Online Article Text |
id | pubmed-8704541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87045412021-12-25 Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material Martinelli, Enzo Caggiano, Antonio Materials (Basel) Article This paper aims at further advancing the knowledge about the cyclic behavior of FRP strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from a numerical model based on concepts of based on fracture mechanics and already presented and validated by the authors in previous works. Particularly, it assumes that fracture processes leading to debonding develop in pure mode II, as is widely accepted in the literature. Starting from this assumption (and having clear both its advantages acnd shortcomings), the results of a parametric analysis are presented with the aim of investigating the role of both the mechanical properties of the interface bond–slip law and a relevant geometric quantity such as the bond length. The obtained results show the influence of the interface bond–slip law and FRP bond length on the resulting cyclic response of the FRP-to-concrete joint, the latter characterized in terms of S-N curves generally adopted in the theory of fatigue. Far from deriving a fully defined correlation among those parameters, the results indicate general trends that can be helpful to drive further investigation, both experimental and numerical in nature. MDPI 2021-12-15 /pmc/articles/PMC8704541/ /pubmed/34947340 http://dx.doi.org/10.3390/ma14247753 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Martinelli, Enzo Caggiano, Antonio Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material |
title | Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material |
title_full | Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material |
title_fullStr | Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material |
title_full_unstemmed | Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material |
title_short | Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material |
title_sort | low-cycle fatigue of frp strips glued to a quasi-brittle material |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704541/ https://www.ncbi.nlm.nih.gov/pubmed/34947340 http://dx.doi.org/10.3390/ma14247753 |
work_keys_str_mv | AT martinellienzo lowcyclefatigueoffrpstripsgluedtoaquasibrittlematerial AT caggianoantonio lowcyclefatigueoffrpstripsgluedtoaquasibrittlematerial |