Cargando…
Inhibition Ability of Natural Compounds on Receptor-Binding Domain of SARS-CoV2: An In Silico Approach
The lack of medication to treat COVID-19 is still an obstacle that needs to be addressed by all possible scientific approaches. It is essential to design newer drugs with varied approaches. A receptor-binding domain (RBD) is a key part of SARS-CoV-2 virus, located on its surface, that allows it to d...
Autores principales: | Nedyalkova, Miroslava, Vasighi, Mahdi, Sappati, Subrahmanyam, Kumar, Anmol, Madurga, Sergio, Simeonov, Vasil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704597/ https://www.ncbi.nlm.nih.gov/pubmed/34959727 http://dx.doi.org/10.3390/ph14121328 |
Ejemplares similares
-
Sequence-Based
Prediction of Plant Allergenic Proteins:
Machine Learning Classification Approach
por: Nedyalkova, Miroslava, et al.
Publicado: (2023) -
A multilevel approach for screening natural compounds as an antiviral agent for COVID-19
por: Vasighi, Mahdi, et al.
Publicado: (2022) -
Combinatorial K-Means Clustering as a Machine Learning Tool Applied to Diabetes Mellitus Type 2
por: Nedyalkova, Miroslava, et al.
Publicado: (2021) -
Vibrational Analysis of Manganese(II) Oxalates Hydrates:
An In Silico Statistical Approach
por: Barazorda-Ccahuana, Haruna L., et al.
Publicado: (2020) -
Collection of Partition Coefficients in Hexadecyltrimethylammonium Bromide, Sodium Cholate, and Lithium Perfluorooctanesulfonate Micellar Solutions: Experimental Determination and Computational Predictions
por: Saranjam, Leila, et al.
Publicado: (2023)