Cargando…
Assessment of the In Vitro Cytotoxicity Effects of the Leaf Methanol Extract of Crinum zeylanicum on Mouse Induced Pluripotent Stem Cells and Their Cardiomyocytes Derivatives
Crinum zeylanicum (C. zeylanicum) is commonly used in African folk medicine to treat cardiovascular ailments. In the present study, we investigated the cytotoxic effect of the leaf methanol extract of C. zeylanicum (CZE) using mouse pluripotent stem cells (mPSCs). mPSCs and their cardiomyocytes (CMs...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704771/ https://www.ncbi.nlm.nih.gov/pubmed/34959609 http://dx.doi.org/10.3390/ph14121208 |
Sumario: | Crinum zeylanicum (C. zeylanicum) is commonly used in African folk medicine to treat cardiovascular ailments. In the present study, we investigated the cytotoxic effect of the leaf methanol extract of C. zeylanicum (CZE) using mouse pluripotent stem cells (mPSCs). mPSCs and their cardiomyocytes (CMs) derivatives were exposed to CZE at different concentrations. Cell proliferation, differentiation capacity, and beating activity were assessed using xCELLigence system and microscopy for embryoid body (EB) morphology. Expression of markers associated with major cardiac cell types was examined by immunofluorescence and quantitative RT-PCR. Intracellular reactive oxygen species (ROS) levels were assessed by dichlorodihydrofluorescein diacetate staining. The results showed that the plant extract significantly reduced cell proliferation and viability in a concentration- and time-dependent manner. This was accompanied by a decrease in EB size and an increase in intracellular ROS. High concentrations of CZE decreased the expression of some important cardiac biomarkers. In addition, CZE treatment was associated with poor sarcomere structural organization of CMs and significantly decreased the amplitude and beating rate of CMs, without affecting CMs viability. These results indicate that CZE might be toxic at high concentrations in the embryonic stages of stem cells and could modulate the contracting activity of CMs. |
---|