Cargando…
Degradation-Aware Deep Learning Framework for Sparse-View CT Reconstruction
Sparse-view CT reconstruction is a fundamental task in computed tomography to overcome undesired artifacts and recover the details of textual structure in degraded CT images. Recently, many deep learning-based networks have achieved desirable performances compared to iterative reconstruction algorit...
Autores principales: | Sun, Chang, Liu, Yitong, Yang, Hongwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704775/ https://www.ncbi.nlm.nih.gov/pubmed/34941649 http://dx.doi.org/10.3390/tomography7040077 |
Ejemplares similares
-
Sparse-View CT Reconstruction Based on a Hybrid Domain Model with Multi-Level Wavelet Transform
por: Bai, Jielin, et al.
Publicado: (2022) -
A Limited-View CT Reconstruction Framework Based on Hybrid Domains and Spatial Correlation
por: Deng, Ken, et al.
Publicado: (2022) -
Performance of sparse-view CT reconstruction with multi-directional gradient operators
por: Hsieh, Chia-Jui, et al.
Publicado: (2019) -
An improved statistical iterative algorithm for sparse-view and limited-angle CT image reconstruction
por: Hu, Zhanli, et al.
Publicado: (2017) -
Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
por: Xie, Shipeng, et al.
Publicado: (2018)