Cargando…
Evaluation of a Deep Learning Algorithm for Automated Spleen Segmentation in Patients with Conditions Directly or Indirectly Affecting the Spleen
The aim of this study was to develop a deep learning-based algorithm for fully automated spleen segmentation using CT images and to evaluate the performance in conditions directly or indirectly affecting the spleen (e.g., splenomegaly, ascites). For this, a 3D U-Net was trained on an in-house datase...
Autores principales: | Meddeb, Aymen, Kossen, Tabea, Bressem, Keno K., Hamm, Bernd, Nagel, Sebastian N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704906/ https://www.ncbi.nlm.nih.gov/pubmed/34941650 http://dx.doi.org/10.3390/tomography7040078 |
Ejemplares similares
-
Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly
por: Meddeb, Aymen, et al.
Publicado: (2022) -
Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images
por: Ahn, Yura, et al.
Publicado: (2020) -
Deep Learning Automation of Kidney, Liver, and Spleen Segmentation for Organ Volume Measurements in Autosomal Dominant Polycystic Kidney Disease
por: Sharbatdaran, Arman, et al.
Publicado: (2022) -
Comparing different deep learning architectures for classification of chest radiographs
por: Bressem, Keno K., et al.
Publicado: (2020) -
The Spleen
por: Bhatia, S. L.
Publicado: (1929)