Cargando…
A Fast and Accurate Approach to Multiple-Vehicle Localization and Tracking from Monocular Aerial Images
In this work we present a novel end-to-end solution for tracking objects (i.e., vessels), using video streams from aerial drones, in dynamic maritime environments. Our method relies on deep features, which are learned using realistic simulation data, for robust object detection, segmentation and tra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705035/ https://www.ncbi.nlm.nih.gov/pubmed/34940737 http://dx.doi.org/10.3390/jimaging7120270 |
Sumario: | In this work we present a novel end-to-end solution for tracking objects (i.e., vessels), using video streams from aerial drones, in dynamic maritime environments. Our method relies on deep features, which are learned using realistic simulation data, for robust object detection, segmentation and tracking. Furthermore, we propose the use of rotated bounding-box representations, which are computed by taking advantage of pixel-level object segmentation, for improved tracking accuracy, by reducing erroneous data associations during tracking, when combined with the appearance-based features. A thorough set of experiments and results obtained in a realistic shipyard simulation environment, demonstrate that our method can accurately, and fast detect and track dynamic objects seen from a top-view. |
---|