Cargando…

Precise-Integration Time-Domain Formulation for Optical Periodic Media

A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary con...

Descripción completa

Detalles Bibliográficos
Autores principales: Sirvent-Verdú, Joan Josep, Francés, Jorge, Márquez, Andrés, Neipp, Cristian, Álvarez, Mariela, Puerto, Daniel, Gallego, Sergi, Pascual, Inmaculada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705158/
https://www.ncbi.nlm.nih.gov/pubmed/34947491
http://dx.doi.org/10.3390/ma14247896
Descripción
Sumario:A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.