Cargando…

Precise-Integration Time-Domain Formulation for Optical Periodic Media

A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary con...

Descripción completa

Detalles Bibliográficos
Autores principales: Sirvent-Verdú, Joan Josep, Francés, Jorge, Márquez, Andrés, Neipp, Cristian, Álvarez, Mariela, Puerto, Daniel, Gallego, Sergi, Pascual, Inmaculada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705158/
https://www.ncbi.nlm.nih.gov/pubmed/34947491
http://dx.doi.org/10.3390/ma14247896
_version_ 1784621877317074944
author Sirvent-Verdú, Joan Josep
Francés, Jorge
Márquez, Andrés
Neipp, Cristian
Álvarez, Mariela
Puerto, Daniel
Gallego, Sergi
Pascual, Inmaculada
author_facet Sirvent-Verdú, Joan Josep
Francés, Jorge
Márquez, Andrés
Neipp, Cristian
Álvarez, Mariela
Puerto, Daniel
Gallego, Sergi
Pascual, Inmaculada
author_sort Sirvent-Verdú, Joan Josep
collection PubMed
description A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps.
format Online
Article
Text
id pubmed-8705158
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87051582021-12-25 Precise-Integration Time-Domain Formulation for Optical Periodic Media Sirvent-Verdú, Joan Josep Francés, Jorge Márquez, Andrés Neipp, Cristian Álvarez, Mariela Puerto, Daniel Gallego, Sergi Pascual, Inmaculada Materials (Basel) Article A numerical formulation based on the precise-integration time-domain (PITD) method for simulating periodic media is extended for overcoming the Courant-Friedrich-Levy (CFL) limit on the time-step size in a finite-difference time-domain (FDTD) simulation. In this new method, the periodic boundary conditions are implemented, permitting the simulation of a wide range of periodic optical media, i.e., gratings, or thin-film filters. Furthermore, the complete tensorial derivation for the permittivity also allows simulating anisotropic periodic media. Numerical results demonstrate that PITD is reliable and even considering anisotropic media can be competitive compared to traditional FDTD solutions. Furthermore, the maximum allowable time-step size has been demonstrated to be much larger than that of the CFL limit of the FDTD method, being a valuable tool in cases in which the steady-state requires a large number of time-steps. MDPI 2021-12-20 /pmc/articles/PMC8705158/ /pubmed/34947491 http://dx.doi.org/10.3390/ma14247896 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sirvent-Verdú, Joan Josep
Francés, Jorge
Márquez, Andrés
Neipp, Cristian
Álvarez, Mariela
Puerto, Daniel
Gallego, Sergi
Pascual, Inmaculada
Precise-Integration Time-Domain Formulation for Optical Periodic Media
title Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_full Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_fullStr Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_full_unstemmed Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_short Precise-Integration Time-Domain Formulation for Optical Periodic Media
title_sort precise-integration time-domain formulation for optical periodic media
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705158/
https://www.ncbi.nlm.nih.gov/pubmed/34947491
http://dx.doi.org/10.3390/ma14247896
work_keys_str_mv AT sirventverdujoanjosep preciseintegrationtimedomainformulationforopticalperiodicmedia
AT francesjorge preciseintegrationtimedomainformulationforopticalperiodicmedia
AT marquezandres preciseintegrationtimedomainformulationforopticalperiodicmedia
AT neippcristian preciseintegrationtimedomainformulationforopticalperiodicmedia
AT alvarezmariela preciseintegrationtimedomainformulationforopticalperiodicmedia
AT puertodaniel preciseintegrationtimedomainformulationforopticalperiodicmedia
AT gallegosergi preciseintegrationtimedomainformulationforopticalperiodicmedia
AT pascualinmaculada preciseintegrationtimedomainformulationforopticalperiodicmedia