Cargando…

The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach

CATEGORY: Ankle; Basic Sciences/Biologics; Sports INTRODUCTION/PURPOSE: The biomechanics of ankle sprains involves a multiplanar-supination motion and not the strict inversion as is often described. During supination, calcaneal inversion occurs at the anatomic subtalar joint. The intrinsic subtalar...

Descripción completa

Detalles Bibliográficos
Autores principales: Duggal, Naven, Williamson, Patrick M., Nazarian, Ara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705256/
http://dx.doi.org/10.1177/2473011420S00196
_version_ 1784621901365116928
author Duggal, Naven
Williamson, Patrick M.
Nazarian, Ara
author_facet Duggal, Naven
Williamson, Patrick M.
Nazarian, Ara
author_sort Duggal, Naven
collection PubMed
description CATEGORY: Ankle; Basic Sciences/Biologics; Sports INTRODUCTION/PURPOSE: The biomechanics of ankle sprains involves a multiplanar-supination motion and not the strict inversion as is often described. During supination, calcaneal inversion occurs at the anatomic subtalar joint. The intrinsic subtalar ligaments include a series of broad thick ligaments situated in the tarsal canal that separate the anterior and posterior compartments. The subtalar intrinsic ligaments are damaged in an estimated 25% to 80% of all lateral ankle sprains. We hypothesize that the intrinsic subtalar ligaments have a multiplanar role in ankle joint stabilization similar to that of the anterior cruciate ligament at the knee. The purpose of this study is to evaluate the efficacy of four surgical approaches to the subtalar ligaments through cadaveric dissection. METHODS: Four fresh-frozen cadaveric ankle specimens were utilized. Ability to access the extrinsic lateral ankle ligament (anterior talofibular), the extrinsic subtalar ligaments (calcaneofibular, lateral talocalcaneal) and the intrinsic subtalar ligaments (interosseous talocalcaneal, cervical) was evaluated. The first cadaveric specimen was dissected as a baseline to identify the extrinsic and intrinsic subtalar ligaments. The three remaining cadaveric specimens were utilized to evaluate the efficacy of three standard surgical approaches (a curvilinear incision made over the distal anterior border of lateral malleolus, a posterolateral longitudinal incision, and an extensile sinus tarsi approach) to access both the extrinsic ankle and subtalar ligaments as well as the intrinsic subtalar ligaments. Ability to access all ligaments as well as identification of neurovascular structures at risk during the dissection was recorded for each approach. RESULTS: The curvilinear incision made over the distal anterior border of the lateral malleolus provided access to the anterior talofibular, calcaneofibular ligaments. Branches of the superficial peroneal nerve were noted to be at direct risk. The posterior longitudinal incision provided access to the calcaneofibular, lateral talocalcaneal ligaments. Branches of the sural nerve were noted to be at direct risk with this approach. An extensile posterolateral incision improved access to the anterior talofibular ligament. An extensile sinus tarsi approach provided the most direct access to the interosseous talocalcaneal and cervical ligaments. Visualization of the calcaneofibular and lateral talocalcaneal was also provided with this incision. The saphenous and superficial nerve branches and the sinus tarsi artery were noted to be at risk. CONCLUSION: We hypothesize that the intrinsic subtalar ligaments have a multiplanar role in ankle joint stabilization similar to that of the anterior cruciate ligament at the knee. Accurate identification and optimal surgical approach to these structures has not been well described in the orthopaedic foot and ankle literature. This cadaveric study provides evidence that an extensile sinus tarsi approach can provide access to the extrinsic ankle and subtalar ligaments as well as the intrinsic ligaments of the subtalar joint.
format Online
Article
Text
id pubmed-8705256
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-87052562022-01-28 The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach Duggal, Naven Williamson, Patrick M. Nazarian, Ara Foot Ankle Orthop Article CATEGORY: Ankle; Basic Sciences/Biologics; Sports INTRODUCTION/PURPOSE: The biomechanics of ankle sprains involves a multiplanar-supination motion and not the strict inversion as is often described. During supination, calcaneal inversion occurs at the anatomic subtalar joint. The intrinsic subtalar ligaments include a series of broad thick ligaments situated in the tarsal canal that separate the anterior and posterior compartments. The subtalar intrinsic ligaments are damaged in an estimated 25% to 80% of all lateral ankle sprains. We hypothesize that the intrinsic subtalar ligaments have a multiplanar role in ankle joint stabilization similar to that of the anterior cruciate ligament at the knee. The purpose of this study is to evaluate the efficacy of four surgical approaches to the subtalar ligaments through cadaveric dissection. METHODS: Four fresh-frozen cadaveric ankle specimens were utilized. Ability to access the extrinsic lateral ankle ligament (anterior talofibular), the extrinsic subtalar ligaments (calcaneofibular, lateral talocalcaneal) and the intrinsic subtalar ligaments (interosseous talocalcaneal, cervical) was evaluated. The first cadaveric specimen was dissected as a baseline to identify the extrinsic and intrinsic subtalar ligaments. The three remaining cadaveric specimens were utilized to evaluate the efficacy of three standard surgical approaches (a curvilinear incision made over the distal anterior border of lateral malleolus, a posterolateral longitudinal incision, and an extensile sinus tarsi approach) to access both the extrinsic ankle and subtalar ligaments as well as the intrinsic subtalar ligaments. Ability to access all ligaments as well as identification of neurovascular structures at risk during the dissection was recorded for each approach. RESULTS: The curvilinear incision made over the distal anterior border of the lateral malleolus provided access to the anterior talofibular, calcaneofibular ligaments. Branches of the superficial peroneal nerve were noted to be at direct risk. The posterior longitudinal incision provided access to the calcaneofibular, lateral talocalcaneal ligaments. Branches of the sural nerve were noted to be at direct risk with this approach. An extensile posterolateral incision improved access to the anterior talofibular ligament. An extensile sinus tarsi approach provided the most direct access to the interosseous talocalcaneal and cervical ligaments. Visualization of the calcaneofibular and lateral talocalcaneal was also provided with this incision. The saphenous and superficial nerve branches and the sinus tarsi artery were noted to be at risk. CONCLUSION: We hypothesize that the intrinsic subtalar ligaments have a multiplanar role in ankle joint stabilization similar to that of the anterior cruciate ligament at the knee. Accurate identification and optimal surgical approach to these structures has not been well described in the orthopaedic foot and ankle literature. This cadaveric study provides evidence that an extensile sinus tarsi approach can provide access to the extrinsic ankle and subtalar ligaments as well as the intrinsic ligaments of the subtalar joint. SAGE Publications 2020-11-06 /pmc/articles/PMC8705256/ http://dx.doi.org/10.1177/2473011420S00196 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Article
Duggal, Naven
Williamson, Patrick M.
Nazarian, Ara
The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach
title The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach
title_full The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach
title_fullStr The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach
title_full_unstemmed The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach
title_short The ACL of the Ankle Joint: A Cadaveric Evaluation of the Subtalar Intrinsic Ligaments and Optimal Surgical Approach
title_sort acl of the ankle joint: a cadaveric evaluation of the subtalar intrinsic ligaments and optimal surgical approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705256/
http://dx.doi.org/10.1177/2473011420S00196
work_keys_str_mv AT duggalnaven theacloftheanklejointacadavericevaluationofthesubtalarintrinsicligamentsandoptimalsurgicalapproach
AT williamsonpatrickm theacloftheanklejointacadavericevaluationofthesubtalarintrinsicligamentsandoptimalsurgicalapproach
AT nazarianara theacloftheanklejointacadavericevaluationofthesubtalarintrinsicligamentsandoptimalsurgicalapproach
AT duggalnaven acloftheanklejointacadavericevaluationofthesubtalarintrinsicligamentsandoptimalsurgicalapproach
AT williamsonpatrickm acloftheanklejointacadavericevaluationofthesubtalarintrinsicligamentsandoptimalsurgicalapproach
AT nazarianara acloftheanklejointacadavericevaluationofthesubtalarintrinsicligamentsandoptimalsurgicalapproach